The generator matrix 1 0 0 0 1 1 1 X^2 1 1 X X^3+X 1 X^3+X^2 1 0 1 1 1 X^3+X^2 1 0 1 1 X^3+X^2+X X^3 X^2+X 1 1 0 1 X^3+X^2+X X^3+X^2+X 1 0 1 0 0 0 X^3+1 X^3+1 1 X^3+X^2+X X^3+X^2+X+1 X^3 1 X^2+X 1 X^3+X^2+1 1 X^3+X^2+1 X^3+X+1 X^3+X+1 1 X^2+X X^3+X^2+X 1 X^2 X^2 1 1 X^3+X^2+1 X^2+X X X X X^3+X X^3 0 0 1 0 1 1 X^2 X^2+1 0 X+1 1 X^3 X+1 X^2+X+1 X^3+X X^2+1 1 X^2+X 0 X^3+X^2+X X^3+X 1 X^3+X+1 X^2+X 1 X+1 X^3+X^2 X X^2 X^3 X^2+1 X^3 1 X^2 0 0 0 1 1 X^2 X^2+1 X^2+X+1 X+1 X^2+X+1 X+1 X^3+X^2+X+1 X^2+X X^2 X X 1 X^2+1 X^3+X 1 X^3+X 0 X^2 X^3+X^2+X+1 X+1 X^2+1 X^3+X^2+X X^3+X+1 X^3 1 X^3+1 1 0 X^2 0 0 0 0 X^3+X^2 0 X^3+X^2 0 X^2 X^2 X^2 X^3+X^2 0 X^3 0 X^2 X^3 X^3 X^3+X^2 0 X^2 X^2 X^2 0 X^3 X^2 X^2 X^3+X^2 0 X^2 X^3 X^3 X^3+X^2 X^2 generates a code of length 34 over Z2[X]/(X^4) who´s minimum homogenous weight is 27. Homogenous weight enumerator: w(x)=1x^0+84x^27+874x^28+2988x^29+7933x^30+16646x^31+31043x^32+44956x^33+52619x^34+45206x^35+31704x^36+16828x^37+7533x^38+2562x^39+844x^40+244x^41+41x^42+14x^43+14x^44+8x^45+2x^46 The gray image is a linear code over GF(2) with n=272, k=18 and d=108. This code was found by Heurico 1.16 in 229 seconds.